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CONFIGURATIONS,  REGULAR GRAPHS AND C H E M I C A L  COMPOUNDS 

Harald GROPP 
Miihlingstrasse 19, D-6900 Heidelberg, Germany 

Abstract 

The mathematical structures of a configuration and a regular graph and certain 
chemical compounds are compared. Some recursive construction methods for these 
structures are described. A short survey on results about configurations concludes the 
paper. 

1. Definitions and examples 

1.1.  CONFIGURATIONS 

DEFINITION 1.1. 

A configuration (Vr, bk) is a finite incidence structure with the following 
properties: 

(a) There are v points and b lines. 

(b) There are k points on each line and r lines through each point. 

(c) Two different lines intersect each other at most once and two different points 
are connected by a line at most once. 

Remark 1.2 

It is easy to prove that the following conditions are necessary for the existence 
of a configuration (vr, bD: 

(1) v r = b k ,  (2) v > r ( k - 1 ) + l ,  and (3) b>k(r-1)+l .  

If v = b and hence r = k, the configuration is called symmetric and is denoted by 
Vk. Configurat ion is abbreviated by cfz. (Plural: cfzs.; the Italian word is 
"configurazione".) 

EXAMPLE 1.3 

Figures 1, 2 and 3 show the Fano cfz.73, a certain blocking set free cfz.133 
(compare [3]) and the unique cfz.(62, 43), respectively. 
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Fig. 1. Fig. 2 Fig. 3. 

1.2. REGULAR GRAPHS 

DEFINITION 1.4 

An r-regular graph with v vertices is a graph where all vertices have 
degree r. Such a graph has b = vr/2 edges. 

EXAMPLE 1.5 

Figures 4, 5, and 6 show the two non-isomorphic 3-regular graphs with 6 
vertices and the famous Petersen graph, one of  the twenty-one 3-regular graphs with 
10 vertices. 

Fig. 4. Fig. 5. Fig. 6 

1.3. CHEMICAL COMPOUNDS 

In this paper, "chemical  compound"  is a name for the following simple model  
of a molecule consisting of atoms of chemical elements (such as carbon, hydrogen . . . .  ) 
and the bonds between them. The model  does not describe the realization of  the 
molecule  in three-dimensional Euclidean space. 

EXAMPLE 1.6 

Figures 7, 8, 9, and 10 show the molecules CH4, C3H 6, and two possible 
isomers of  C6H6 . 
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Fig. 7. Fig. 8. Fig. 9. Fig. 10. 
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2. Some history 

2.1. CONFIGURATIONS AND GRAPHS 

Configurations were defined by Reye in 1876. During the period until 1910, 
many results were obtained (compare section 4), mainly by German, Italian, and 
Dutch mathematicians. After 1910, the interest in configurations and the knowledge 
of  them decreased significantly (see [6]). 

Some early results in graph theory have been obtained since 1736 (Euler and 
the bridges of K6nigsberg), but as singular results and not within a theory. These 
include also chemical results (e.g. Cayley and acyclic hydrocarbons). 

The earliest paper in graph-theoretic language is said to be Petersen's paper 
of 1891 [11] called Die Theorie der reguldren graphs, where he proves results about 
regular graphs. 

It is easy to see that configurations (Vr, b2) and r-regular graphs with v 
vertices are equivalent combinatorial structures. So it happened that some 3-regular 
and 4-regular graphs were enumerated already in 1889/91 in the language of 
configurations. 

2.2. THE WORK OF JAN DE VRIES 

One of the most important mathematicians who investigated configurations 
in those early days was Jan De Vries (born 1st March 1858 in Amsterdam, died 3rd 
May 1940 in Utrecht). After having studied in Amsterdam, he became a teacher of 
mathematics in Kampen in 1880. Most of his research on configurations was done 
before he became Professor of Geometry in Utrecht in 1897. 

In 1889, De Vries wrote a paper [12] in which he investigated "planar 
configurations in which each point is incident with two lines". It is easy to see that 
these structures are isomorphic to regular graphs if the lines of the configuration 
are taken as the vertices and if the points are regarded as the edges of the graph. 
In fact, he determined all small 3-regular and 4-regular graphs (up to a small error, 
which he corrected in 1891 in [13]) at a time when Petersen published his famous 
paper about "The theory of regular graphs". The recursive method of De Vries is 
exhibited in section 3.2. For further details, see [7]. 

2.3. REGULAR GRAPHS AND ANNULENES 

Since the papers of De Vries use the language of configurations long before 
graph theory became an established mathematical theory, his results were unknown 
to most of  the graph theorists (maybe even to all of them!) until very recently. The 
"first" enumeration of all 3-regular graphs with 10 vertices, for example, was done 
by A.T. Balaban in 1966/67 [1]. His motivation was his interest in a chemical 
problem. Balaban wanted to determine all possible valence-isomers of the annulene 

CloH10. 
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If only those isomers are considered where each C-atom is connected to three 
other C-atoms and one H-atom, and in which only simple bonds are allowed, the 
problem of determining all such possible molecules is equivalent to the determination 
of all 3-regular graphs with 10 vertices. 

[1, p. 1099] A . . .  problem in the theory of graphs . . .  is to find 
out . . .  all topologically different ways of connecting 2p equivalent 
points so that each point is connected to three other points. 

Compare figs. 4 and 5 with 9 and 10. 
By using a computer, Balaban solved this problem in graph theory in 

1966/67. 

3. Recursive construct ion methods  

3.1. V. MARTINETI'I AND CONFIGURATIONS 

In [10], Martinetti defined a recursive construction method in order to construct 
all cfzs. 113. 

[10, p. 1] In questa nota mi propongo di far conoscere un metodo per 
dedurre tutte le forme possibili di configurazioni #3, quando si conoscano 
tutte le cfz. ( # -  1)3. Applicher6 in fine questo metodo per dedurre 
dalle note cfz.103 tutte le cfz . l l  3 che, io credo, non furono ancora 
indicate. 

Given a cfz. n 3. If possible, take two parallel lines a = {Ao, A1, A2} and b = {Bo, B 1, B2} 
and two points, say Ao ~ a and Bo ~ b which are non-connected. Remove lines a 
and b and add a new point Z as well as the three new lines through Z: {Z, A 1, A2}, 
{Z, B1, B2}, {Z, Ao, Bo}. One obtains a cfz. (n + 1) 3. 

Ao AI A2 
"7 e -_ 
I 

Bo B1 B2 

A2 

Z A ~  Bo 

B~ 

B2 

All configurations (n + 1)3 which can be constructed by this method (apply 
it wherever you can!) are called reducible, the others are called irreducible. 

Martinetti also constructed all irreducible cfzs. n3: one series of cfz .n  3 (take 
{ 1, 2, 4} mod(n)), one series of cfz.(10n)3, the Pappus cfz.93 and two more cfz. 103. 
See section 4.2 for the enumeration of cfz.n3 after Martinetti. 
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3.2. J. DE VRIES A N D  R E G U L A R  GRAPHS 

The recursive method of  De Vries [12] can be used to construct all cfzs. 
(vr, b2) (i.e. all 3-regular graphs). 

[12, p. 387] Uit bet voorgaande blijkt nu, dat de verschillende (3n2, 2n3) 
door middel van drie vervormingen kunnen bepaald worden, zoodra 
men de overeenkomstige cf. met twee en vier lijnen minder kent. 

The three transformations used by De Vries are described here in graph- 
theoretic notation. New vertices are denoted by o instead of o. All removed or added 
edges are labeled with , .  

a(cd, ef) ("atrigonische vervorming"): Remove the edges cd, ef and add as 
new edges ab, ac, ad, be, bf, where a and b are two new vertices. The edge ab is 
not on a triangle. 

• ) 

a(cd, e f )  

"t-(a) ("trigonische vervorming"): Remove the edges ag, ah and add as new edges 
ac, ad, cd, cg, ch, where c and d are two new vertices. The edge cd is on exactly 
one triangle. 

5(bi) ("ditrigonische vervorming"): Remove the edge bi and add as new edges 
ab, ac, ad, cd, cg, where a, c, d, g are four new vertices. The edge cd belongs to two 
triangles. 

¢ 

The transformations a and "t- yield cubic graphs on v + 2 vertices and 5 yields 
a graph on v + 4 vertices, if the original graph had v vertices. 

De Vries also found a similar method for 4-regular graphs which, however,  
he could not apply because of  a condition which was not true in the smallest case. 
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3.3. A.T. BALABAN AND ANNULENES 

In [2], Balaban defined two operations in order to construct all general cubic 
graphs (i.e. also those with loops and multiple edges) of  order n + 2 recursively 
from those of order n. 

Operation 1: Mark on two edges two new vertices and join them by a new edge. 

Operation 2: Mark on an edge a new vertex and join it by a new edge to a new 
loop. 

II t t  I 
3.4. FURTHER METHODS 

Two further methods are mentioned here very briefly. In 1971, Imrich [9] 
determined all 3-regular graphs with 10 vertices. He did not use a recursive method, 
but he classified all the graphs depending on how many triangles they contain. This 
was done without a computer. The proof needs about four pages. 

Quite recently, I read the English summary of  a Chinese paper by Zhang and 
Yang [14], who use an algorithm RGC (regular graphs counting) for determining 
all regular graphs with at most 12 vertices. 

4. Configurations as generalized regular graphs 

It is explained above that configurations with k = 2 are equivalent to regular 
graphs. In this sense, configurations can be regarded as generalized regular graphs. 
In this section, the main results which have been obtained in configuration theory 
will be exhibited. The interested reader is referred to further papers which describe 
these results in detail (see [4-6]) .  

4.1. EXISTENCE 

Given parameters v, r, b, k, the question arises whether cfz.(vr, bk) exists. Of 
course, the necessary conditions must hold. A very famous non-existence result 
says that there are no two orthogonal Latin squares of  order 6. This implies the non- 
existence of a cfz.(367, 426). 

For k = 3, the existence problem has been solved (see [4]): All cfz.(~or, b3) 
exist for which the necessary conditions hold. 

The same seems to be true also for k = 4. No case of  non-existence has been 
found and the "most difficult" of all these configurations have already been constructed. 

There is no cfz.225 (see [4]), although the necessary conditions hold. 
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4.2. ENUMERATION 

For those parameter sets for which a configuration exits, the question arises 
whether there are "essentially different" configurations. More precisely, the question 
is: How many non-isomorphic configurations (vr, bk) are there? 

This question has been answered, e.g. for the following cfzs. For further 
details and references, see [4]. 

Cfz.(u,, bk) 

Symm. cfz. Number Non-symm. cfz. Number 

73 1 (94, 123) l 

83 1 (136, 263) 2 

93 3 (157,353) 80 

103 10 (125, 203) 5 

113 31 (146, 283) 787 

123 229 (124, 163) 574 
133 2036 

143 21399 

The enumeration of all cfzs.113 was already achieved in 1887 by Martinetti, 
of course without the use of a computer. Instead, he created his recursive method 
described in section 3.1 and applied it with success. The determination of all 
cfzs.123 was tried in 1895 by D. yon Sterneck. However, he did not obtain the 
correct result. By using his own method (not Martinetti's method), he missed exactly 
one configuration, a fact which was not discovered until 1988. During the last years, 
I combined the method of Martinetti and a computer and could determine all cfzs. 123, 
133, and 143 (see [4]). 

The determination of all c1~s.(124, 163) in 1990 was the last step of a more 
than 150 year old history of constructions of such configurations. After some singular 
constructions until about 1955 and after about 200 further constructions in 
Czechoslovakia after that (which, however, remained nearly unknown, being published 
in Czechoslovak journals in Czech or German), the problem could be solved by 
using combinatorial relations between configurations, graphs, and Steiner systems. 

4.3. ADDITIONAL PROPERTIES 

Until now, not many configurations have been really drawn in this paper with 
"real points" and "real lines", e.g. in the Euclidean plane. The so-called realizability 
of such a combinatorial structure is, however, but one out of many interesting 
properties. In the following, this property will be discussed, while some other 
properties such as blocking sets or divisibility can only be mentioned. 
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Also the question whether the abstract points of a cfz. can be located in the 
plane such that those points which belong to the same abstract line are, in fact, 
collinear in the real plane is about as old as the question of  configurations itself. 
It was known shortly after their construction in 1881 that exactly one of all the ten 
configurations 103 cannot be drawn in the plane. On the other hand, the Desargues 
cfz. 103 can be drawn "quite easily". 

A more sophisticated question is whether a configuration can be realized in 
the plane choosing coordinates of the points in the plane with certain restrictions. 
For example, the configuration 214 of Grtinbaum and Rigby is not realizable with 
rational coordinates (see [8]), but it is with real coordinates. 

4.4. ISOMORPHISM PROBLEM 

A big problem in combinatorial mathematics is whether two structures (e.g. 
graphs, designs or configurations) are isomorphic or not. In figs. 11-13,  three 
graphs are exhibited but, in fact, they all describe the same graph. 

Fig. 11. Fig. 12. Fig. 13. 

A graph is simply defined by saying which of its vertices are connected by 
an edge (and which are not). Thus, the above graph (of course, the Petersen graph) 
can be described by its 15 edges: 03, 06, 09, 15, 17, 19, 24, 25, 26, 35, 38, 48, 49, 67, 78. 
Applying a permutation on { 1,2 . . . . .  10} to this set of 15 edges produces another 
graph. Since, however, these graphs can only be dstinguished by their notation, they 
are isomorphic. 

An equivalent problem is a somehow "reasonable" name for a configuration 
or a design. Of course, this also arises in chemistry for finding canonical names for 
(especially) aromatic hydrocarbons. As far as I know, this problem has been solved 
in principle, but I doubt that it can really be solved for large molecules. Since 
computing time (even on a very large computer) is limited, there is a need for 
finding a normalized notation for a cfz. in a relatively short time. For references, 
see [4]. 

5. Conclusion 

This short paper could only mention very briefly some facts and examples, 
I hope, however, that the similar concepts in combinatorial theory and mathematical 
chemistry will enable a good cooperation in the future. 
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